Neutrophil Elastase Cleaves PML-RARα and Is Important for the Development of Acute Promyelocytic Leukemia in Mice

نویسندگان

  • Andrew A. Lane
  • Timothy J. Ley
چکیده

The fusion protein PML-RARalpha, generated by the t(15;17)(q22;q11.2) translocation associated with acute promyelocytic leukemia (APL), initiates APL when expressed in the early myeloid compartment of transgenic mice. PML-RARalpha is cleaved in several positions by a neutral serine protease in a human myeloid cell line; purification revealed that the protease is neutrophil elastase (NE). Immunofluorescence localization studies suggested that the cleavage of PML-RARalpha must occur within the cell, and perhaps, within the nucleus. The functional importance of NE for APL development was assessed in NE deficient mice. Greater than 90% of bone marrow PML-RARalpha cleaving activity was lost in the absence of NE, and NE (but not Cathepsin G) deficient animals were protected from APL development. Primary mouse and human APL cells also contain NE-dependent PML-RARalpha cleaving activity. Since NE is maximally produced in promyelocytes, this protease may play a role in APL pathogenesis by facilitating the leukemogenic potential of PML-RARalpha.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Location of NLS-RARα protein in NB4 cell and nude mice

In the majority of acute promyelocytic leukemia (APL) cases, translocons produce a promyelocytic leukemia protein-retinoic acid receptor α (PML-RARα) fusion gene. Studies have reported that neutrophil elastase (NE) cleaves bcr-1-derived PML-RAα in early myeloid cells, leaving only the nuclear localization signal (NLS) of PML attached to RARα. NLS-RARα promotes cell growth and inhibits different...

متن کامل

PML(NLS¯) protein: A novel marker for the early diagnosis of acute promyelocytic leukemia

Promyelocyte leukemia‑retinoic acid receptor α (PML‑RARα) is known as a fusion gene of acute promyelocytic leukemia (APL). Previous studies have reported that neutrophil elastase (NE) cleaves PML‑RARα in early myeloid cells, which leads to the removal of the nuclear localization signal (NLS) in PML and increases the incidence of APL. The resultant PML without the NLS is termed PML(NLS‑). The ai...

متن کامل

Neutrophil elastase is important for PML-retinoic acid receptor alpha activities in early myeloid cells.

Expression of the PML-retinoic acid receptor alpha (PML-RARalpha) fusion protein is the initiating genetic event for acute promyelocytic leukemia (APL), but the molecular mechanisms responsible for disease initiation are not yet clear. Several observations have suggested that early myeloid cells are uniquely susceptible to transformation by PML-RARalpha. Recently, we have shown that the early m...

متن کامل

Neutrophil Elastase Is Important for PML-Retinoic Acid Receptor Activities in Early Myeloid Cells

Expression of the PML-retinoic acid receptor (PML-RAR ) fusion protein is the initiating genetic event for acute promyelocytic leukemia (APL), but the molecular mechanisms responsible for disease initiation are not yet clear. Several observations have suggested that early myeloid cells are uniquely susceptible to transformation by PML-RAR . Recently, we have shown that the early myeloid-specifi...

متن کامل

NLS-RARα is a novel transcriptional factor

Acute promyelocytic leukemia (APL) is characterized by the presence of the promyelocytic leukemia (PML)-retinoic acid receptor-α (RAR-α) fusion protein. PML-RARα can be cleaved by neutrophil elastase (NE) in several positions in cells in the promyelocytic stage, nuclear location signal (NLS)-negative PML and NLS-RARα may be the products of PML-RARα by NE. The function of NLS-RARα may be affecte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 115  شماره 

صفحات  -

تاریخ انتشار 2003